Oscar
HomeServicesDocumentation
  • Overview
  • Quickstart
  • Getting Started
  • System Hardware
  • Account Information
  • Short "How to" Videos
  • Quick Reference
    • Common Acronyms and Terms
    • Managing Modules
    • Common Linux Commands
  • Getting Help
    • ❓FAQ
  • Citing CCV
  • CCV Account Information
  • Student Accounts
  • Offboarding
  • Connecting to Oscar
    • SSH (Terminal)
      • SSH Key Login (Passwordless SSH)
        • Mac/Linux/Windows(PowerShell)
        • Windows(PuTTY)
      • SSH Configuration File
      • X-Forwarding
      • SSH Agent Forwarding
        • Mac/Linux
        • Windows (PuTTY)
      • Arbiter2
    • Open OnDemand
      • Using File Explorer on OOD
      • Web-based Terminal App
      • Interactive Apps on OOD
      • Using Python or Conda environments in the Jupyter App
      • Using RStudio
      • Desktop App (VNC)
    • SMB (Local Mount)
    • Remote IDE (VS Code)
      • From Non-compliant Networks (2-FA)
      • Setup virtual environment and debugger
  • Managing files
    • Oscar's Filesystem
    • Transferring Files to and from Oscar
    • Transferring Files between Oscar and Campus File Storage (Replicated and Non-Replicated)
    • Resolving quota issues
      • Understanding Disk Quotas
    • Inspecting Disk Usage (Ncdu)
    • Restoring Deleted Files
    • Best Practices for I/O
    • Version Control
  • Submitting jobs
    • Running Jobs
    • Slurm Partitions
    • Interactive Jobs
    • Batch Jobs
    • Managing Jobs
    • Job Arrays
    • MPI Jobs
    • Condo/Priority Jobs
    • Dependent Jobs
    • Associations & Quality of Service (QOS)
  • GPU Computing
    • GPUs on Oscar
      • Grace Hopper GH200 GPUs
      • H100 NVL Tensor Core GPUs
      • Ampere Architecture GPUs
    • Submitting GPU Jobs
    • Intro to CUDA
    • Compiling CUDA
    • Installing Frameworks (PyTorch, TensorFlow, Jax)
      • Installing JAX
      • Installing TensorFlow
    • Mixing MPI and CUDA
  • Large Memory Computing
    • Large Memory Nodes on Oscar
  • Software
    • Software on Oscar
    • Using Modules
    • Migration of MPI Apps to Slurm 22.05.7
    • Python on Oscar
    • Python in batch jobs
    • Installing Python Packages
    • Installing R Packages
    • Using CCMake
    • Intro to Parallel Programming
    • Anaconda
    • Conda and Mamba
    • DMTCP
    • Screen
    • VASP
    • Gaussian
    • IDL
    • MPI4PY
  • Jupyter Notebooks/Labs
    • Jupyter Notebooks on Oscar
    • Jupyter Labs on Oscar
    • Tunneling into Jupyter with Windows
  • Debugging
    • Arm Forge
      • Configuring Remote Launch
      • Setting Job Submission Settings
  • MATLAB
    • Matlab GUI
    • Matlab Batch Jobs
    • Improving Performance and Memory Management
    • Parallel Matlab
  • Visualization 🕶
    • ParaView Remote Rendering
  • Singularity Containers
    • Intro to Apptainer
    • Building Images
    • Running Images
    • Accessing Oscar Filesystem
      • Example Container (TensorFlow)
    • Singularity Tips and Tricks
  • Installing Software Packages Locally
    • Installing your own version of Quantum Espresso
    • Installing your own version of Qmcpack
  • dbGaP
    • dbGaP Architecture
    • dbGaP Data Transfers
    • dbGaP Job Submission
  • RHEL9 Migration
    • RHEL-9 Migration
    • LMOD - New Module System
    • Module Changes
    • Testing Jupyter Notebooks on RHEL9 mini-cluster
  • Large Language Models
    • Ollama
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Installing Software Packages Locally

Installing your own version of Qmcpack

These instructions are for users who need to install their own version of Qmcpack.

Do not load the 'qmcpack' module. If you have a 'qmcpack' module loaded, unload it:

module unloadqmcpack

Step 1: Create a new directory where you want to install Qmcpack:

mkdir -p qmcpack/src
cd qmcpack/src/

Step 2: Download the version of Qmcpack you want from the GitHub repo:

https://github.com/QEF/q-e/releases
wget https://github.com/QMCPACK/qmcpack/archive/v3.10.0.tar.gz
tar xvf v3.10.0.tar.gz
cd qmcpack-3.10.0/

Step 3: Load the newer compiler module and configure it with custom flags.

module load mpi/openmpi_4.0.5_intel_2020.2_slurm20
module load intel/2020.2 cuda/11.1.1
module load hdf5/1.12.0_openmpi_4.0.5_intel_2020.2_slurm20
module load python/3.6.6
module load boost/1.68
module load cmake/3.15.4

cd build

cmake -DCMAKE_INSTALL_PREFIX=/users/<username>/qmcpack/ -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx \
-DQE_BIN=/gpfs/runtime/opt/quantumespresso/6.4_openmpi_4.0.5_intel_2020.2_slurm20/bin/ \
-DBUILD_PPCONVERT=1 -DBUILD_AFQMC=0 -DENABLE_MKL=1 \
-DQMC_VERBOSE_CONFIGURATION=1 QMC_COMPLEX=1 ..

The --prefix PATH will be replaced by your custom install location

Step 4: If you are happy with the configure flags then install them by:

make -j 8
make install 

Step 5 (Optional): Adding Qmcpack to your path

Add the following lines to your ~/.bashrc

export PATH=/users/<username>/qmcpack/bin:$PATH
export PYTHONPATH=/users/<username>/qmcpack/qmcpack-3.10.0/nexus/lib:$PYTHONPATH

Restart the Oscar session or source .bashrc

PreviousInstalling your own version of Quantum EspressoNextdbGaP Architecture

Last updated 2 years ago

Was this helpful?

More configuration options can be found .

here