Oscar
HomeServicesDocumentation
  • Overview
  • Quickstart
  • Getting Started
  • System Hardware
  • Account Information
  • Short "How to" Videos
  • Quick Reference
    • Common Acronyms and Terms
    • Managing Modules
    • Common Linux Commands
  • Getting Help
    • ❓FAQ
  • Citing CCV
  • CCV Account Information
  • Student Accounts
  • Offboarding
  • Connecting to Oscar
    • SSH (Terminal)
      • SSH Key Login (Passwordless SSH)
        • Mac/Linux/Windows(PowerShell)
        • Windows(PuTTY)
      • SSH Configuration File
      • X-Forwarding
      • SSH Agent Forwarding
        • Mac/Linux
        • Windows (PuTTY)
      • Arbiter2
    • Open OnDemand
      • Using File Explorer on OOD
      • Web-based Terminal App
      • Interactive Apps on OOD
      • Using Python or Conda environments in the Jupyter App
      • Using RStudio
      • Desktop App (VNC)
    • SMB (Local Mount)
    • Remote IDE (VS Code)
      • From Non-compliant Networks (2-FA)
      • Setup virtual environment and debugger
  • Managing files
    • Oscar's Filesystem
    • Transferring Files to and from Oscar
    • Transferring Files between Oscar and Campus File Storage (Replicated and Non-Replicated)
    • Resolving quota issues
      • Understanding Disk Quotas
    • Inspecting Disk Usage (Ncdu)
    • Restoring Deleted Files
    • Best Practices for I/O
    • Version Control
  • Submitting jobs
    • Running Jobs
    • Slurm Partitions
    • Interactive Jobs
    • Batch Jobs
    • Managing Jobs
    • Job Arrays
    • MPI Jobs
    • Condo/Priority Jobs
    • Dependent Jobs
    • Associations & Quality of Service (QOS)
  • GPU Computing
    • GPUs on Oscar
      • Grace Hopper GH200 GPUs
      • H100 NVL Tensor Core GPUs
      • Ampere Architecture GPUs
    • Submitting GPU Jobs
    • Intro to CUDA
    • Compiling CUDA
    • Installing Frameworks (PyTorch, TensorFlow, Jax)
      • Installing JAX
      • Installing TensorFlow
    • Mixing MPI and CUDA
  • Large Memory Computing
    • Large Memory Nodes on Oscar
  • Software
    • Software on Oscar
    • Using Modules
    • Migration of MPI Apps to Slurm 22.05.7
    • Python on Oscar
    • Python in batch jobs
    • Installing Python Packages
    • Installing R Packages
    • Using CCMake
    • Intro to Parallel Programming
    • Anaconda
    • Conda and Mamba
    • DMTCP
    • Screen
    • VASP
    • Gaussian
    • IDL
    • MPI4PY
  • Jupyter Notebooks/Labs
    • Jupyter Notebooks on Oscar
    • Jupyter Labs on Oscar
    • Tunneling into Jupyter with Windows
  • Debugging
    • Arm Forge
      • Configuring Remote Launch
      • Setting Job Submission Settings
  • MATLAB
    • Matlab GUI
    • Matlab Batch Jobs
    • Improving Performance and Memory Management
    • Parallel Matlab
  • Visualization 🕶
    • ParaView Remote Rendering
  • Singularity Containers
    • Intro to Apptainer
    • Building Images
    • Running Images
    • Accessing Oscar Filesystem
      • Example Container (TensorFlow)
    • Singularity Tips and Tricks
  • Installing Software Packages Locally
    • Installing your own version of Quantum Espresso
    • Installing your own version of Qmcpack
  • dbGaP
    • dbGaP Architecture
    • dbGaP Data Transfers
    • dbGaP Job Submission
  • RHEL9 Migration
    • RHEL-9 Migration
    • LMOD - New Module System
    • Module Changes
    • Testing Jupyter Notebooks on RHEL9 mini-cluster
  • Large Language Models
    • Ollama
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. GPU Computing
  2. GPUs on Oscar

Ampere Architecture GPUs

The new Ampere architecture GPUs on Oscar (A6000's and RTX 3090's)

The new Ampere architecture GPUs do not support older CUDA modules. Users must re-compile their applications with the newer CUDA/11 or older modules. Here are detailed instructions to compile major frameworks such as PyTorch, and TensorFlow.

PyTorch

Users can install PyTorch from a pip virtual environment or use pre-built singularity containers provided by Nvidia NGC.

To install via virtual environment:

# Make sure none of the LMOD modules are loaded
module purge 
module list

# create and activate the environment
python -m venv pytorch.venv
source pytorch.venv/bin/activate
pip install torch torchvision torchaudio

# test if it can detect GPUs 

To use NGC containers via Singularity :

  • Pull the image from NGC

singularity build pytorch:21.06-py3 docker://nvcr.io/nvidia/pytorch:21.06-py3
  • Export PATHs to mount the Oscar file system

export SINGULARITY_BINDPATH="/gpfs/home/$USER,/gpfs/scratch/$USER,/gpfs/data/"
  • To use the image interactively

singularity shell --nv pytorch\:21.06-py3
  • To submit batch jobs

#!/bin/bash

# Request a GPU partition node and access to 1 GPU
#SBATCH -p 3090-gcondo,gpu --gres=gpu:1

# Ensures all allocated cores are on the same node
#SBATCH -N 1

# Request 2 CPU cores
#SBATCH -n 2
#SBATCH --mem=40g
#SBATCH --time=10:00:00

#SBATCH -o %j.out

export SINGULARITY_BINDPATH="/gpfs/home/$USER,/gpfs/scratch/$USER,/gpfs/data/"
singularity --version

# Use environment from the singularity image
singularity exec --nv pytorch:21.06-py3 python pytorch-cifar100/train.py -net vgg16 -gpu

PreviousH100 NVL Tensor Core GPUsNextSubmitting GPU Jobs

Last updated 8 months ago

Was this helpful?