Oscar
HomeServicesDocumentation
  • Overview
  • Quickstart
  • Getting Started
  • System Hardware
  • Account Information
  • Short "How to" Videos
  • Quick Reference
    • Common Acronyms and Terms
    • Managing Modules
    • Common Linux Commands
  • Getting Help
    • ❓FAQ
  • Citing CCV
  • CCV Account Information
  • Student Accounts
  • Offboarding
  • Connecting to Oscar
    • SSH (Terminal)
      • SSH Key Login (Passwordless SSH)
        • Mac/Linux/Windows(PowerShell)
        • Windows(PuTTY)
      • SSH Configuration File
      • X-Forwarding
      • SSH Agent Forwarding
        • Mac/Linux
        • Windows (PuTTY)
      • Arbiter2
    • Open OnDemand
      • Using File Explorer on OOD
      • Web-based Terminal App
      • Interactive Apps on OOD
      • Using Python or Conda environments in the Jupyter App
      • Using RStudio
      • Desktop App (VNC)
    • SMB (Local Mount)
    • Remote IDE (VS Code)
      • From Non-compliant Networks (2-FA)
      • Setup virtual environment and debugger
  • Managing files
    • Oscar's Filesystem
    • Transferring Files to and from Oscar
    • Transferring Files between Oscar and Campus File Storage (Replicated and Non-Replicated)
    • Resolving quota issues
      • Understanding Disk Quotas
    • Inspecting Disk Usage (Ncdu)
    • Restoring Deleted Files
    • Best Practices for I/O
    • Version Control
  • Submitting jobs
    • Running Jobs
    • Slurm Partitions
    • Interactive Jobs
    • Batch Jobs
    • Managing Jobs
    • Job Arrays
    • MPI Jobs
    • Condo/Priority Jobs
    • Dependent Jobs
    • Associations & Quality of Service (QOS)
  • GPU Computing
    • GPUs on Oscar
      • Grace Hopper GH200 GPUs
      • H100 NVL Tensor Core GPUs
      • Ampere Architecture GPUs
    • Submitting GPU Jobs
    • Intro to CUDA
    • Compiling CUDA
    • Installing Frameworks (PyTorch, TensorFlow, Jax)
      • Installing JAX
      • Installing TensorFlow
    • Mixing MPI and CUDA
  • Large Memory Computing
    • Large Memory Nodes on Oscar
  • Software
    • Software on Oscar
    • Using Modules
    • Migration of MPI Apps to Slurm 22.05.7
    • Python on Oscar
    • Python in batch jobs
    • Installing Python Packages
    • Installing R Packages
    • Using CCMake
    • Intro to Parallel Programming
    • Anaconda
    • Conda and Mamba
    • DMTCP
    • Screen
    • VASP
    • Gaussian
    • IDL
    • MPI4PY
  • Jupyter Notebooks/Labs
    • Jupyter Notebooks on Oscar
    • Jupyter Labs on Oscar
    • Tunneling into Jupyter with Windows
  • Debugging
    • Arm Forge
      • Configuring Remote Launch
      • Setting Job Submission Settings
  • MATLAB
    • Matlab GUI
    • Matlab Batch Jobs
    • Improving Performance and Memory Management
    • Parallel Matlab
  • Visualization 🕶
    • ParaView Remote Rendering
  • Singularity Containers
    • Intro to Apptainer
    • Building Images
    • Running Images
    • Accessing Oscar Filesystem
      • Example Container (TensorFlow)
    • Singularity Tips and Tricks
  • Installing Software Packages Locally
    • Installing your own version of Quantum Espresso
    • Installing your own version of Qmcpack
  • dbGaP
    • dbGaP Architecture
    • dbGaP Data Transfers
    • dbGaP Job Submission
  • RHEL9 Migration
    • RHEL-9 Migration
    • LMOD - New Module System
    • Module Changes
    • Testing Jupyter Notebooks on RHEL9 mini-cluster
  • Large Language Models
    • Ollama
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Debugging

Arm Forge

PreviousTunneling into Jupyter with WindowsNextConfiguring Remote Launch

Last updated 5 years ago

Was this helpful?

is available on Oscar. There are two products, DDT (debugger) and MAP (performance reports).

We recommend you use the Arm Forge remote client to launch your debugging jobs on Oscar. The first time you set up Arm Forge you will need to configure the client with the following steps:

  1. Download the on your machine.

Compile your code with -g so you can see the source code in your debugging session

Arm DDT

Arm DDT is a powerful graphical debugger suitable for many different development environments, including:

  • Single process and multithreaded software.

  • OpenMP.

  • Parallel (MPI) software.

Arm MAP

Arm MAP is a parallel profiler that shows you which lines of code took the most time to run, and why. Arm MAP does not require any complicated configuration, and you do not need to have experience with profiling tools to use it.

Arm MAP supports:

  • MPI, OpenMP and single-threaded programs.

  • Small data files. All data is aggregated on the cluster and only a few megabytes written to disk, regardless of the size or duration of the run.

  • Sophisticated source code view, enabling you to analyze performance across individual functions.

  • Both interactive and batch modes for gathering profile data.

  • A rich set of metrics, that show memory usage, floating-point calculations and MPI usage across processes, including:

    • Percentage of vectorized instructions, including AVX extensions, used in each part of the code.

    • Time spent in memory operations, and how it varies over time and processes, to verify if there are any cache bottlenecks.

    • A visual overview across aggregated processes and cores that highlights any regions of imbalance in the code.

Arm Forge
arm forge remote client
Configuring Remote Launch from the client
Set up Job Submission Settings