Oscar
HomeServicesDocumentation
  • Overview
  • Quickstart
  • Getting Started
  • System Hardware
  • Account Information
  • Short "How to" Videos
  • Quick Reference
    • Common Acronyms and Terms
    • Managing Modules
    • Common Linux Commands
  • Getting Help
    • ❓FAQ
  • Citing CCV
  • CCV Account Information
  • Student Accounts
  • Offboarding
  • Connecting to Oscar
    • SSH (Terminal)
      • SSH Key Login (Passwordless SSH)
        • Mac/Linux/Windows(PowerShell)
        • Windows(PuTTY)
      • SSH Configuration File
      • X-Forwarding
      • SSH Agent Forwarding
        • Mac/Linux
        • Windows (PuTTY)
      • Arbiter2
    • Open OnDemand
      • Using File Explorer on OOD
      • Web-based Terminal App
      • Interactive Apps on OOD
      • Using Python or Conda environments in the Jupyter App
      • Using RStudio
      • Desktop App (VNC)
    • SMB (Local Mount)
    • Remote IDE (VS Code)
      • From Non-compliant Networks (2-FA)
      • Setup virtual environment and debugger
  • Managing files
    • Oscar's Filesystem
    • Transferring Files to and from Oscar
    • Transferring Files between Oscar and Campus File Storage (Replicated and Non-Replicated)
    • Resolving quota issues
      • Understanding Disk Quotas
    • Inspecting Disk Usage (Ncdu)
    • Restoring Deleted Files
    • Best Practices for I/O
    • Version Control
  • Submitting jobs
    • Running Jobs
    • Slurm Partitions
    • Interactive Jobs
    • Batch Jobs
    • Managing Jobs
    • Job Arrays
    • MPI Jobs
    • Condo/Priority Jobs
    • Dependent Jobs
    • Associations & Quality of Service (QOS)
  • GPU Computing
    • GPUs on Oscar
      • Grace Hopper GH200 GPUs
      • H100 NVL Tensor Core GPUs
      • Ampere Architecture GPUs
    • Submitting GPU Jobs
    • Intro to CUDA
    • Compiling CUDA
    • Installing Frameworks (PyTorch, TensorFlow, Jax)
      • Installing JAX
      • Installing TensorFlow
    • Mixing MPI and CUDA
  • Large Memory Computing
    • Large Memory Nodes on Oscar
  • Software
    • Software on Oscar
    • Using Modules
    • Migration of MPI Apps to Slurm 22.05.7
    • Python on Oscar
    • Python in batch jobs
    • Installing Python Packages
    • Installing R Packages
    • Using CCMake
    • Intro to Parallel Programming
    • Anaconda
    • Conda and Mamba
    • DMTCP
    • Screen
    • VASP
    • Gaussian
    • IDL
    • MPI4PY
  • Jupyter Notebooks/Labs
    • Jupyter Notebooks on Oscar
    • Jupyter Labs on Oscar
    • Tunneling into Jupyter with Windows
  • Debugging
    • Arm Forge
      • Configuring Remote Launch
      • Setting Job Submission Settings
  • MATLAB
    • Matlab GUI
    • Matlab Batch Jobs
    • Improving Performance and Memory Management
    • Parallel Matlab
  • Visualization 🕶
    • ParaView Remote Rendering
  • Singularity Containers
    • Intro to Apptainer
    • Building Images
    • Running Images
    • Accessing Oscar Filesystem
      • Example Container (TensorFlow)
    • Singularity Tips and Tricks
  • Installing Software Packages Locally
    • Installing your own version of Quantum Espresso
    • Installing your own version of Qmcpack
  • dbGaP
    • dbGaP Architecture
    • dbGaP Data Transfers
    • dbGaP Job Submission
  • RHEL9 Migration
    • RHEL-9 Migration
    • LMOD - New Module System
    • Module Changes
    • Testing Jupyter Notebooks on RHEL9 mini-cluster
  • Large Language Models
    • Ollama
Powered by GitBook
On this page
  • Hardware Specifications
  • Access
  • Running NGC Containers
  • Running Oscar Modules

Was this helpful?

Export as PDF
  1. GPU Computing
  2. GPUs on Oscar

H100 NVL Tensor Core GPUs

PreviousGrace Hopper GH200 GPUsNextAmpere Architecture GPUs

Last updated 7 months ago

Was this helpful?

Oscar has two H100 nodes. is based on the that accelerates the training of AI models. The two DGX nodes provides better performance when multiple GPUS are used, in particular with Nvidia software like .

Multiple-Instance GPU (MIG) is not enabled on the DGX H100 nodes

Hardware Specifications

Each DGX H100 node has 112 Intel CPUs with 2TB memory, and 8 Nvidia H100 GPUs. Each H100 GPU has 80G memory.

Access

The two DGX H100 nodes are in the gpu-he partition. To access H100 GPUs, users need to submit jobs to the gpu-he partition and request the h100 feature, i.e.

#SBATCH --partition=gpu-he
#SBATCH --constraint=h100

Running NGC Containers

NGC containers provide the best performance from the DGX H100 nodes. is an example for running NGC containers.

Running Oscar Modules

The two nodes have Intel CPUs. So Oscar modules can still be loaded and run on the two DGX nodes.

DGX
H100
Nividia Hopper architecutre
NGC containers
Running tensorflow containers