Single Subject Analysis: Visual/Motor Activation
Preprocessing a single subject/session and applying a general linear model using AFNI
Step 1: Download data from XNAT and automatically convert to BIDS format with xnat-tools
# Configuring arguments here will override default parameters.
[slurm-args]
mail-user = "[email protected]"
mail-type = "ALL"
[xnat2bids-args]
sessions = [
"XNAT_E01849"
]
# Skip scanner-derived multi-planar reconstructions & non-distortion-corrected images
# These are used for MRS voxel placement on the scanner and will cause xnat2bids to fail.
skipseq=["anat-t1w_acq-memprage_MPR_Cor","anat-t1w_acq-memprage_MPR_Tra","anat-t1w_acq-memprage_MPR_Tra_ND","anat-t1w_acq-memprage RMS_ND","anat-t1w_acq-memprage_MPR_Cor_ND"]
verbose=1Step 2: Extract stimulus timing information from stimulus presentation output files.
Step 3: Convert events.tsv files into AFNI stimulus timing files
Step 4: Use afni_proc.py to create a simple preprocessing stream and run the general linear model for the checks task
Run the batch script
Step 5: Viewing the Output
Visual Hemifield Localizer Task

Motor Activation (Button Press) Task

Last updated
Was this helpful?